\(\int \frac {a b B-a^2 C+b^2 B x+b^2 C x^2}{(a+b x) \sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx\) [18]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 60, antiderivative size = 291 \[ \int \frac {a b B-a^2 C+b^2 B x+b^2 C x^2}{(a+b x) \sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=\frac {2 b C \sqrt {-d e+c f} \sqrt {\frac {d (e+f x)}{d e-c f}} \sqrt {g+h x} E\left (\arcsin \left (\frac {\sqrt {f} \sqrt {c+d x}}{\sqrt {-d e+c f}}\right )|\frac {(d e-c f) h}{f (d g-c h)}\right )}{d \sqrt {f} h \sqrt {e+f x} \sqrt {\frac {d (g+h x)}{d g-c h}}}-\frac {2 \sqrt {-d e+c f} (b C g-b B h+a C h) \sqrt {\frac {d (e+f x)}{d e-c f}} \sqrt {\frac {d (g+h x)}{d g-c h}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {f} \sqrt {c+d x}}{\sqrt {-d e+c f}}\right ),\frac {(d e-c f) h}{f (d g-c h)}\right )}{d \sqrt {f} h \sqrt {e+f x} \sqrt {g+h x}} \]

[Out]

2*b*C*EllipticE(f^(1/2)*(d*x+c)^(1/2)/(c*f-d*e)^(1/2),((-c*f+d*e)*h/f/(-c*h+d*g))^(1/2))*(c*f-d*e)^(1/2)*(d*(f
*x+e)/(-c*f+d*e))^(1/2)*(h*x+g)^(1/2)/d/h/f^(1/2)/(f*x+e)^(1/2)/(d*(h*x+g)/(-c*h+d*g))^(1/2)-2*(-B*b*h+C*a*h+C
*b*g)*EllipticF(f^(1/2)*(d*x+c)^(1/2)/(c*f-d*e)^(1/2),((-c*f+d*e)*h/f/(-c*h+d*g))^(1/2))*(c*f-d*e)^(1/2)*(d*(f
*x+e)/(-c*f+d*e))^(1/2)*(d*(h*x+g)/(-c*h+d*g))^(1/2)/d/h/f^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2)

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 291, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {24, 164, 115, 114, 122, 121} \[ \int \frac {a b B-a^2 C+b^2 B x+b^2 C x^2}{(a+b x) \sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=\frac {2 b C \sqrt {g+h x} \sqrt {c f-d e} \sqrt {\frac {d (e+f x)}{d e-c f}} E\left (\arcsin \left (\frac {\sqrt {f} \sqrt {c+d x}}{\sqrt {c f-d e}}\right )|\frac {(d e-c f) h}{f (d g-c h)}\right )}{d \sqrt {f} h \sqrt {e+f x} \sqrt {\frac {d (g+h x)}{d g-c h}}}-\frac {2 \sqrt {c f-d e} \sqrt {\frac {d (e+f x)}{d e-c f}} \sqrt {\frac {d (g+h x)}{d g-c h}} (a C h-b B h+b C g) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {f} \sqrt {c+d x}}{\sqrt {c f-d e}}\right ),\frac {(d e-c f) h}{f (d g-c h)}\right )}{d \sqrt {f} h \sqrt {e+f x} \sqrt {g+h x}} \]

[In]

Int[(a*b*B - a^2*C + b^2*B*x + b^2*C*x^2)/((a + b*x)*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]),x]

[Out]

(2*b*C*Sqrt[-(d*e) + c*f]*Sqrt[(d*(e + f*x))/(d*e - c*f)]*Sqrt[g + h*x]*EllipticE[ArcSin[(Sqrt[f]*Sqrt[c + d*x
])/Sqrt[-(d*e) + c*f]], ((d*e - c*f)*h)/(f*(d*g - c*h))])/(d*Sqrt[f]*h*Sqrt[e + f*x]*Sqrt[(d*(g + h*x))/(d*g -
 c*h)]) - (2*Sqrt[-(d*e) + c*f]*(b*C*g - b*B*h + a*C*h)*Sqrt[(d*(e + f*x))/(d*e - c*f)]*Sqrt[(d*(g + h*x))/(d*
g - c*h)]*EllipticF[ArcSin[(Sqrt[f]*Sqrt[c + d*x])/Sqrt[-(d*e) + c*f]], ((d*e - c*f)*h)/(f*(d*g - c*h))])/(d*S
qrt[f]*h*Sqrt[e + f*x]*Sqrt[g + h*x])

Rule 24

Int[(u_.)*((a_) + (b_.)*(v_))^(m_)*((A_.) + (B_.)*(v_) + (C_.)*(v_)^2), x_Symbol] :> Dist[1/b^2, Int[u*(a + b*
v)^(m + 1)*Simp[b*B - a*C + b*C*v, x], x], x] /; FreeQ[{a, b, A, B, C}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0] &&
 LeQ[m, -1]

Rule 114

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2/b)*Rt[-(b
*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /;
 FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-(b*c - a*d)/d, 0] &&
  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])

Rule 115

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[Sqrt[e + f*x
]*(Sqrt[b*((c + d*x)/(b*c - a*d))]/(Sqrt[c + d*x]*Sqrt[b*((e + f*x)/(b*e - a*f))])), Int[Sqrt[b*(e/(b*e - a*f)
) + b*f*(x/(b*e - a*f))]/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))]), x], x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !(GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0]) &&  !LtQ[-(b*c - a*d)/d, 0]

Rule 121

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[2*(Rt[-b/d,
 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)
/(d*(b*e - a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] && Si
mplerQ[a + b*x, c + d*x] && SimplerQ[a + b*x, e + f*x] && (PosQ[-(b*c - a*d)/d] || NegQ[-(b*e - a*f)/f])

Rule 122

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[Sqrt[b*((c
+ d*x)/(b*c - a*d))]/Sqrt[c + d*x], Int[1/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))]*Sqrt[e
+ f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !GtQ[(b*c - a*d)/b, 0] && SimplerQ[a + b*x, c + d*x] && Si
mplerQ[a + b*x, e + f*x]

Rule 164

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {b^2 (b B-a C)+b^3 C x}{\sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx}{b^2} \\ & = \frac {(b C) \int \frac {\sqrt {g+h x}}{\sqrt {c+d x} \sqrt {e+f x}} \, dx}{h}-\frac {(b C g-b B h+a C h) \int \frac {1}{\sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx}{h} \\ & = -\frac {\left ((b C g-b B h+a C h) \sqrt {\frac {d (e+f x)}{d e-c f}}\right ) \int \frac {1}{\sqrt {c+d x} \sqrt {\frac {d e}{d e-c f}+\frac {d f x}{d e-c f}} \sqrt {g+h x}} \, dx}{h \sqrt {e+f x}}+\frac {\left (b C \sqrt {\frac {d (e+f x)}{d e-c f}} \sqrt {g+h x}\right ) \int \frac {\sqrt {\frac {d g}{d g-c h}+\frac {d h x}{d g-c h}}}{\sqrt {c+d x} \sqrt {\frac {d e}{d e-c f}+\frac {d f x}{d e-c f}}} \, dx}{h \sqrt {e+f x} \sqrt {\frac {d (g+h x)}{d g-c h}}} \\ & = \frac {2 b C \sqrt {-d e+c f} \sqrt {\frac {d (e+f x)}{d e-c f}} \sqrt {g+h x} E\left (\sin ^{-1}\left (\frac {\sqrt {f} \sqrt {c+d x}}{\sqrt {-d e+c f}}\right )|\frac {(d e-c f) h}{f (d g-c h)}\right )}{d \sqrt {f} h \sqrt {e+f x} \sqrt {\frac {d (g+h x)}{d g-c h}}}-\frac {\left ((b C g-b B h+a C h) \sqrt {\frac {d (e+f x)}{d e-c f}} \sqrt {\frac {d (g+h x)}{d g-c h}}\right ) \int \frac {1}{\sqrt {c+d x} \sqrt {\frac {d e}{d e-c f}+\frac {d f x}{d e-c f}} \sqrt {\frac {d g}{d g-c h}+\frac {d h x}{d g-c h}}} \, dx}{h \sqrt {e+f x} \sqrt {g+h x}} \\ & = \frac {2 b C \sqrt {-d e+c f} \sqrt {\frac {d (e+f x)}{d e-c f}} \sqrt {g+h x} E\left (\sin ^{-1}\left (\frac {\sqrt {f} \sqrt {c+d x}}{\sqrt {-d e+c f}}\right )|\frac {(d e-c f) h}{f (d g-c h)}\right )}{d \sqrt {f} h \sqrt {e+f x} \sqrt {\frac {d (g+h x)}{d g-c h}}}-\frac {2 \sqrt {-d e+c f} (b C g-b B h+a C h) \sqrt {\frac {d (e+f x)}{d e-c f}} \sqrt {\frac {d (g+h x)}{d g-c h}} F\left (\sin ^{-1}\left (\frac {\sqrt {f} \sqrt {c+d x}}{\sqrt {-d e+c f}}\right )|\frac {(d e-c f) h}{f (d g-c h)}\right )}{d \sqrt {f} h \sqrt {e+f x} \sqrt {g+h x}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 21.10 (sec) , antiderivative size = 326, normalized size of antiderivative = 1.12 \[ \int \frac {a b B-a^2 C+b^2 B x+b^2 C x^2}{(a+b x) \sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=\frac {2 \left (b C d^2 \sqrt {-c+\frac {d e}{f}} (e+f x) (g+h x)+i b C (d e-c f) h (c+d x)^{3/2} \sqrt {\frac {d (e+f x)}{f (c+d x)}} \sqrt {\frac {d (g+h x)}{h (c+d x)}} E\left (i \text {arcsinh}\left (\frac {\sqrt {-c+\frac {d e}{f}}}{\sqrt {c+d x}}\right )|\frac {d f g-c f h}{d e h-c f h}\right )-i d (b C e-b B f+a C f) h (c+d x)^{3/2} \sqrt {\frac {d (e+f x)}{f (c+d x)}} \sqrt {\frac {d (g+h x)}{h (c+d x)}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-c+\frac {d e}{f}}}{\sqrt {c+d x}}\right ),\frac {d f g-c f h}{d e h-c f h}\right )\right )}{d^2 \sqrt {-c+\frac {d e}{f}} f h \sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \]

[In]

Integrate[(a*b*B - a^2*C + b^2*B*x + b^2*C*x^2)/((a + b*x)*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]),x]

[Out]

(2*(b*C*d^2*Sqrt[-c + (d*e)/f]*(e + f*x)*(g + h*x) + I*b*C*(d*e - c*f)*h*(c + d*x)^(3/2)*Sqrt[(d*(e + f*x))/(f
*(c + d*x))]*Sqrt[(d*(g + h*x))/(h*(c + d*x))]*EllipticE[I*ArcSinh[Sqrt[-c + (d*e)/f]/Sqrt[c + d*x]], (d*f*g -
 c*f*h)/(d*e*h - c*f*h)] - I*d*(b*C*e - b*B*f + a*C*f)*h*(c + d*x)^(3/2)*Sqrt[(d*(e + f*x))/(f*(c + d*x))]*Sqr
t[(d*(g + h*x))/(h*(c + d*x))]*EllipticF[I*ArcSinh[Sqrt[-c + (d*e)/f]/Sqrt[c + d*x]], (d*f*g - c*f*h)/(d*e*h -
 c*f*h)]))/(d^2*Sqrt[-c + (d*e)/f]*f*h*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x])

Maple [A] (verified)

Time = 2.34 (sec) , antiderivative size = 506, normalized size of antiderivative = 1.74

method result size
elliptic \(\frac {\sqrt {\left (d x +c \right ) \left (f x +e \right ) \left (h x +g \right )}\, \left (\frac {2 \left (B b -C a \right ) \left (\frac {g}{h}-\frac {e}{f}\right ) \sqrt {\frac {x +\frac {g}{h}}{\frac {g}{h}-\frac {e}{f}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {g}{h}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {e}{f}}{-\frac {g}{h}+\frac {e}{f}}}\, F\left (\sqrt {\frac {x +\frac {g}{h}}{\frac {g}{h}-\frac {e}{f}}}, \sqrt {\frac {-\frac {g}{h}+\frac {e}{f}}{-\frac {g}{h}+\frac {c}{d}}}\right )}{\sqrt {d f h \,x^{3}+c f h \,x^{2}+d e h \,x^{2}+d f g \,x^{2}+c e h x +c f g x +d e g x +c e g}}+\frac {2 C b \left (\frac {g}{h}-\frac {e}{f}\right ) \sqrt {\frac {x +\frac {g}{h}}{\frac {g}{h}-\frac {e}{f}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {g}{h}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {e}{f}}{-\frac {g}{h}+\frac {e}{f}}}\, \left (\left (-\frac {g}{h}+\frac {c}{d}\right ) E\left (\sqrt {\frac {x +\frac {g}{h}}{\frac {g}{h}-\frac {e}{f}}}, \sqrt {\frac {-\frac {g}{h}+\frac {e}{f}}{-\frac {g}{h}+\frac {c}{d}}}\right )-\frac {c F\left (\sqrt {\frac {x +\frac {g}{h}}{\frac {g}{h}-\frac {e}{f}}}, \sqrt {\frac {-\frac {g}{h}+\frac {e}{f}}{-\frac {g}{h}+\frac {c}{d}}}\right )}{d}\right )}{\sqrt {d f h \,x^{3}+c f h \,x^{2}+d e h \,x^{2}+d f g \,x^{2}+c e h x +c f g x +d e g x +c e g}}\right )}{\sqrt {d x +c}\, \sqrt {f x +e}\, \sqrt {h x +g}}\) \(506\)
default \(-\frac {2 \left (B F\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) b d e \,h^{2}-B F\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) b d f g h -C F\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) a d e \,h^{2}+C F\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) a d f g h -C F\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) b c e \,h^{2}+C F\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) b c f g h +C E\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) b c e \,h^{2}-C E\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) b c f g h -C E\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) b d e g h +C E\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) b d f \,g^{2}\right ) \sqrt {\frac {\left (f x +e \right ) h}{e h -f g}}\, \sqrt {\frac {\left (d x +c \right ) h}{c h -d g}}\, \sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}\, \sqrt {d x +c}\, \sqrt {f x +e}\, \sqrt {h x +g}}{h^{2} f d \left (d f h \,x^{3}+c f h \,x^{2}+d e h \,x^{2}+d f g \,x^{2}+c e h x +c f g x +d e g x +c e g \right )}\) \(682\)

[In]

int((C*b^2*x^2+B*b^2*x+B*a*b-C*a^2)/(b*x+a)/(d*x+c)^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x,method=_RETURNVERBOSE)

[Out]

((d*x+c)*(f*x+e)*(h*x+g))^(1/2)/(d*x+c)^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2)*(2*(B*b-C*a)*(g/h-e/f)*((x+g/h)/(g/h
-e/f))^(1/2)*((x+c/d)/(-g/h+c/d))^(1/2)*((x+e/f)/(-g/h+e/f))^(1/2)/(d*f*h*x^3+c*f*h*x^2+d*e*h*x^2+d*f*g*x^2+c*
e*h*x+c*f*g*x+d*e*g*x+c*e*g)^(1/2)*EllipticF(((x+g/h)/(g/h-e/f))^(1/2),((-g/h+e/f)/(-g/h+c/d))^(1/2))+2*C*b*(g
/h-e/f)*((x+g/h)/(g/h-e/f))^(1/2)*((x+c/d)/(-g/h+c/d))^(1/2)*((x+e/f)/(-g/h+e/f))^(1/2)/(d*f*h*x^3+c*f*h*x^2+d
*e*h*x^2+d*f*g*x^2+c*e*h*x+c*f*g*x+d*e*g*x+c*e*g)^(1/2)*((-g/h+c/d)*EllipticE(((x+g/h)/(g/h-e/f))^(1/2),((-g/h
+e/f)/(-g/h+c/d))^(1/2))-c/d*EllipticF(((x+g/h)/(g/h-e/f))^(1/2),((-g/h+e/f)/(-g/h+c/d))^(1/2))))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 682, normalized size of antiderivative = 2.34 \[ \int \frac {a b B-a^2 C+b^2 B x+b^2 C x^2}{(a+b x) \sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=-\frac {2 \, {\left (3 \, \sqrt {d f h} C b d f h {\rm weierstrassZeta}\left (\frac {4 \, {\left (d^{2} f^{2} g^{2} - {\left (d^{2} e f + c d f^{2}\right )} g h + {\left (d^{2} e^{2} - c d e f + c^{2} f^{2}\right )} h^{2}\right )}}{3 \, d^{2} f^{2} h^{2}}, -\frac {4 \, {\left (2 \, d^{3} f^{3} g^{3} - 3 \, {\left (d^{3} e f^{2} + c d^{2} f^{3}\right )} g^{2} h - 3 \, {\left (d^{3} e^{2} f - 4 \, c d^{2} e f^{2} + c^{2} d f^{3}\right )} g h^{2} + {\left (2 \, d^{3} e^{3} - 3 \, c d^{2} e^{2} f - 3 \, c^{2} d e f^{2} + 2 \, c^{3} f^{3}\right )} h^{3}\right )}}{27 \, d^{3} f^{3} h^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (d^{2} f^{2} g^{2} - {\left (d^{2} e f + c d f^{2}\right )} g h + {\left (d^{2} e^{2} - c d e f + c^{2} f^{2}\right )} h^{2}\right )}}{3 \, d^{2} f^{2} h^{2}}, -\frac {4 \, {\left (2 \, d^{3} f^{3} g^{3} - 3 \, {\left (d^{3} e f^{2} + c d^{2} f^{3}\right )} g^{2} h - 3 \, {\left (d^{3} e^{2} f - 4 \, c d^{2} e f^{2} + c^{2} d f^{3}\right )} g h^{2} + {\left (2 \, d^{3} e^{3} - 3 \, c d^{2} e^{2} f - 3 \, c^{2} d e f^{2} + 2 \, c^{3} f^{3}\right )} h^{3}\right )}}{27 \, d^{3} f^{3} h^{3}}, \frac {3 \, d f h x + d f g + {\left (d e + c f\right )} h}{3 \, d f h}\right )\right ) + {\left (C b d f g + {\left (C b d e + {\left (C b c + 3 \, {\left (C a - B b\right )} d\right )} f\right )} h\right )} \sqrt {d f h} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (d^{2} f^{2} g^{2} - {\left (d^{2} e f + c d f^{2}\right )} g h + {\left (d^{2} e^{2} - c d e f + c^{2} f^{2}\right )} h^{2}\right )}}{3 \, d^{2} f^{2} h^{2}}, -\frac {4 \, {\left (2 \, d^{3} f^{3} g^{3} - 3 \, {\left (d^{3} e f^{2} + c d^{2} f^{3}\right )} g^{2} h - 3 \, {\left (d^{3} e^{2} f - 4 \, c d^{2} e f^{2} + c^{2} d f^{3}\right )} g h^{2} + {\left (2 \, d^{3} e^{3} - 3 \, c d^{2} e^{2} f - 3 \, c^{2} d e f^{2} + 2 \, c^{3} f^{3}\right )} h^{3}\right )}}{27 \, d^{3} f^{3} h^{3}}, \frac {3 \, d f h x + d f g + {\left (d e + c f\right )} h}{3 \, d f h}\right )\right )}}{3 \, d^{2} f^{2} h^{2}} \]

[In]

integrate((C*b^2*x^2+B*b^2*x+B*a*b-C*a^2)/(b*x+a)/(d*x+c)^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x, algorithm="fric
as")

[Out]

-2/3*(3*sqrt(d*f*h)*C*b*d*f*h*weierstrassZeta(4/3*(d^2*f^2*g^2 - (d^2*e*f + c*d*f^2)*g*h + (d^2*e^2 - c*d*e*f
+ c^2*f^2)*h^2)/(d^2*f^2*h^2), -4/27*(2*d^3*f^3*g^3 - 3*(d^3*e*f^2 + c*d^2*f^3)*g^2*h - 3*(d^3*e^2*f - 4*c*d^2
*e*f^2 + c^2*d*f^3)*g*h^2 + (2*d^3*e^3 - 3*c*d^2*e^2*f - 3*c^2*d*e*f^2 + 2*c^3*f^3)*h^3)/(d^3*f^3*h^3), weiers
trassPInverse(4/3*(d^2*f^2*g^2 - (d^2*e*f + c*d*f^2)*g*h + (d^2*e^2 - c*d*e*f + c^2*f^2)*h^2)/(d^2*f^2*h^2), -
4/27*(2*d^3*f^3*g^3 - 3*(d^3*e*f^2 + c*d^2*f^3)*g^2*h - 3*(d^3*e^2*f - 4*c*d^2*e*f^2 + c^2*d*f^3)*g*h^2 + (2*d
^3*e^3 - 3*c*d^2*e^2*f - 3*c^2*d*e*f^2 + 2*c^3*f^3)*h^3)/(d^3*f^3*h^3), 1/3*(3*d*f*h*x + d*f*g + (d*e + c*f)*h
)/(d*f*h))) + (C*b*d*f*g + (C*b*d*e + (C*b*c + 3*(C*a - B*b)*d)*f)*h)*sqrt(d*f*h)*weierstrassPInverse(4/3*(d^2
*f^2*g^2 - (d^2*e*f + c*d*f^2)*g*h + (d^2*e^2 - c*d*e*f + c^2*f^2)*h^2)/(d^2*f^2*h^2), -4/27*(2*d^3*f^3*g^3 -
3*(d^3*e*f^2 + c*d^2*f^3)*g^2*h - 3*(d^3*e^2*f - 4*c*d^2*e*f^2 + c^2*d*f^3)*g*h^2 + (2*d^3*e^3 - 3*c*d^2*e^2*f
 - 3*c^2*d*e*f^2 + 2*c^3*f^3)*h^3)/(d^3*f^3*h^3), 1/3*(3*d*f*h*x + d*f*g + (d*e + c*f)*h)/(d*f*h)))/(d^2*f^2*h
^2)

Sympy [F]

\[ \int \frac {a b B-a^2 C+b^2 B x+b^2 C x^2}{(a+b x) \sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=\int \frac {B b - C a + C b x}{\sqrt {c + d x} \sqrt {e + f x} \sqrt {g + h x}}\, dx \]

[In]

integrate((C*b**2*x**2+B*b**2*x+B*a*b-C*a**2)/(b*x+a)/(d*x+c)**(1/2)/(f*x+e)**(1/2)/(h*x+g)**(1/2),x)

[Out]

Integral((B*b - C*a + C*b*x)/(sqrt(c + d*x)*sqrt(e + f*x)*sqrt(g + h*x)), x)

Maxima [F]

\[ \int \frac {a b B-a^2 C+b^2 B x+b^2 C x^2}{(a+b x) \sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=\int { \frac {C b^{2} x^{2} + B b^{2} x - C a^{2} + B a b}{{\left (b x + a\right )} \sqrt {d x + c} \sqrt {f x + e} \sqrt {h x + g}} \,d x } \]

[In]

integrate((C*b^2*x^2+B*b^2*x+B*a*b-C*a^2)/(b*x+a)/(d*x+c)^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x, algorithm="maxi
ma")

[Out]

integrate((C*b^2*x^2 + B*b^2*x - C*a^2 + B*a*b)/((b*x + a)*sqrt(d*x + c)*sqrt(f*x + e)*sqrt(h*x + g)), x)

Giac [F]

\[ \int \frac {a b B-a^2 C+b^2 B x+b^2 C x^2}{(a+b x) \sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=\int { \frac {C b^{2} x^{2} + B b^{2} x - C a^{2} + B a b}{{\left (b x + a\right )} \sqrt {d x + c} \sqrt {f x + e} \sqrt {h x + g}} \,d x } \]

[In]

integrate((C*b^2*x^2+B*b^2*x+B*a*b-C*a^2)/(b*x+a)/(d*x+c)^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x, algorithm="giac
")

[Out]

integrate((C*b^2*x^2 + B*b^2*x - C*a^2 + B*a*b)/((b*x + a)*sqrt(d*x + c)*sqrt(f*x + e)*sqrt(h*x + g)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a b B-a^2 C+b^2 B x+b^2 C x^2}{(a+b x) \sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=\text {Hanged} \]

[In]

int((C*b^2*x^2 - C*a^2 + B*a*b + B*b^2*x)/((e + f*x)^(1/2)*(g + h*x)^(1/2)*(a + b*x)*(c + d*x)^(1/2)),x)

[Out]

\text{Hanged}